副教授 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 水利工程系
学科: 水工结构工程. 防灾减灾工程及防护工程. 工程管理
办公地点: 抗震实验大厅202
联系方式: 0411-84706429
电子邮箱: shuli@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-09-01
发表刊物: SMART MATERIALS AND STRUCTURES
收录刊物: SCIE、EI、Scopus
卷号: 26
期号: 9
ISSN号: 0964-1726
关键字: spherical smart aggregate; piezoceramic; structural health monitoring
摘要: The newly developed spherical smart aggregate (SSA) based on a radially polarized spherical piezoceramic shell element has unique omnidirectional actuating and sensing capabilities that can greatly improve the detection aperture and provide additional functionalities in health monitoring applications in concrete structures. Detailed fabrication procedures and electrical characterization of the SSA have been previously studied (Part I). In this second paper (Part II), the functionalities of the SSA used in both active sensing and passive sensing approaches were investigated in experiments and numerical simulations. One SSA sample was embedded in a 1 ft(3) concrete specimen. In the active sensing approach, the SSA was first utilized as an actuator to generate stress waves and six conventional smart aggregates (SA) mounted on the six faces of the concrete cube were utilized as sensors to detect the wave response. Conversely, the embedded SSA was then utilized as a sensor to successively detect the wave response from each SA. The experimentally obtained behavior of the SSA was then compared with the numerical simulation results. Further, a series of impact tests were conducted to verify the performance of the SSA in the detection of the impact events from different directions. Comparison with the wave response associated with different faces of the cube verified the omnidirectional actuating and sensing capabilities of the SSA.