![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:创新创业学院
办公地点:创新创业学院402室
联系方式:041184707111
电子邮箱:fenglin@dlut.edu.cn
Uds-fim:An efficient algorithm of frequent itemsets mining over uncertain transaction data streams
点击次数:
论文类型:期刊论文
发表时间:2014-01-01
发表刊物:Journal of Software
收录刊物:EI、Scopus
卷号:9
期号:1
页面范围:44-56
ISSN号:1796217X
摘要:In this paper, we study the problem of finding frequent itemsets from uncertain data streams. To the best of our knowledge, the existing algorithms cannot compress transaction itemsets to a tree as compact as the classical FPTree, thus they need much time and memory space to process the tree. To address this issue, we propose an algorithm UDS-FIM and a tree structure UDS-Tree. Firstly, UDS-FIM maintains probability values of each transactions to an array; secondly, compresses each transaction to a UDS-Tree in the same manner as an FP-Tree (so it is as compact as an FP-Tree) and maintains index of probability values of each transaction in the array to the corresponding tail-nodes; lastly, it mines frequent itemsets from the UDSTree without additional scan of transactions. The experimental results show that UDS-FIM has achieved a good performance under different experimental conditions in terms of runtime and memory consumption. ? 2014 ACADEMY PUBLISHER.