![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:创新创业学院
办公地点:创新创业学院402室
联系方式:041184707111
电子邮箱:fenglin@dlut.edu.cn
扫描关注
Robocup半场防守中的一种强化学习算法
点击次数:
论文类型:期刊论文
发表时间:2008-01-10
发表刊物:计算机技术与发展
卷号:18
期号:1
页面范围:59-62
ISSN号:1673-629X
关键字:Robocup;强化学习;Markov对策;零和对策
摘要:Robocup仿真比赛是研究多Agent之间协作和对抗理论的优秀平台,提高Agent的防守能力是一个具有挑战性的问题.为制定合理的防守策略,将Robocup比赛中的一个子任务--半场防守任务分解为多个一对一防守任务,采用了基于Markov对策的强化学习方法解决这种零和交互问题,给出了具体的学习算法.将该算法应用到3D仿真球队--大连理工大学梦之翼(Fantasia)球队,在实际比赛过程中取得了良好效果.验证了采用Markov零和对策的强化学习算法在一对一防守中优于手工代码的结论.