个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:化工海洋与生命学院副院长
性别:男
毕业院校:新加坡国立大学
学位:博士
所在单位:化工海洋与生命学院
学科:化学工程. 能源化工. 膜科学与技术
联系方式:Tel: 15040603105
电子邮箱:zhangfx@dlut.edu.cn
A Mn3O4 nano-wall array based binder-free cathode for high performance lithium-sulfur batteries
点击次数:
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:JOURNAL OF MATERIALS CHEMISTRY A
收录刊物:SCIE、EI
卷号:5
期号:14
页面范围:6447-6454
ISSN号:2050-7488
摘要:Lithium-sulfur batteries (LSBs) have recently attracted great interest owing to their high theoretical energy density (2500 kW kg(-1)) and low cost and the environmental friendliness of sulfur as the active species at the cathode. However, rapid capacity fading restricts practical application of LSBs. Despite the encouraging progress achieved, this issue still needs to be further addressed. Herein, we report a novel cathode structure based on nano-wall-array Mn3O4 which shows excellent cycle and rate performances. In such a cathode, the Mn3O4 nano-wall arrays function as "nano reservoirs" for sulfur confinement so that the cathode can yield a high-rate (2C) initial (similar to 593 mA h g(-1)) and reversible capacity (similar to 355 mA h g(-1), 60% retention after 3000 cycles). We also show, by X-ray photoelectron spectroscopic and electrochemical analyses, that Mn3O4 as a sulfur-hosting oxide is better than conventionally used MnO2; this is because the former shows better chemical stability in the electrolyte when binding with polysulfides, giving rise to long-lasting suppression of polysulfide shuttle. Our work demonstrates that building a nano-wall array structure of Mn3O4 is an effective strategy to improve lithium-sulfur cathode performance, and for the first time, we propose and show that the stability of polar materials in the electrolyte is a crucial factor that determines the cycle performance of polar materials/ S electrodes.