个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:哈尔滨工业大学
学位:博士
所在单位:软件学院、国际信息与软件学院
联系方式:gaojing@dlut.edu.cn
电子邮箱:gaojing@dlut.edu.cn
A hybrid deep computation model for feature learning on aero-engine data: applications to fault detection
点击次数:
论文类型:期刊论文
发表时间:2020-07-01
发表刊物:APPLIED MATHEMATICAL MODELLING
收录刊物:SCIE
卷号:83
页面范围:487-496
ISSN号:0307-904X
关键字:Feature learning; Deep computation; Gas-path fault detection
摘要:Recently, the safety of aircraft has attracted much attention with some crashes occurring. Gas-path faults, as the most common faults of aircraft, pose a vast challenge for the safety of aircraft because of the complexity of the aero-engine structure. In this article, a hybrid deep computation model is proposed to effectively detect gas-path faults on the basis of the performance data. In detail, to capture the local spatial features of the gas-path performance data, an unfully connected convolutional neural network of one-dimensional kernels is used. Furthermore, to model the temporal patterns hidden in the gas-path faults, a recurrent computation architecture is introduced. Finally, extensive experiments are conducted on real aero-engine data. The results show that the proposed model can outperform the models with which it is compared. (C) 2020 Elsevier Inc. All rights reserved.