硕士生导师
学位:博士
性别:男
毕业院校:中国科学院大连化学物理研究所
所在单位:环境学院
电子邮箱:jsgao@dlut.edu.cn
论文名称:Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon 论文类型:期刊论文 发表刊物:JOURNAL OF COLLOID AND INTERFACE SCIENCE 收录刊物:SCIE、EI、PubMed、Scopus 卷号:447 页面范围:120-127 ISSN号:0021-9797 关键字:Electrospun carbon nanofibers; Adsorption; Ciprofioxacin; Bisphenol; 2-Chlorophenol 摘要:Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326 m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (q(m)) of CNFs towards the three pollutants are sequenced in the order of CIP > BPA > 2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the it electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions. (C) 2015 Elsevier Inc. All rights reserved. 发表时间:2015-06-01