高原
Personal Homepage
Paper Publications
Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism
Hits:

Indexed by:期刊论文

Date of Publication:2018-10-01

Journal:JOURNAL OF COLLOID AND INTERFACE SCIENCE

Included Journals:PubMed、SCIE

Volume:527

Page Number:202-213

ISSN No.:0021-9797

Key Words:Synergy; Adsorption; Photocatalysis; Antibiotics; Degradation pathway

Abstract:In order to achieve remarkable synergy between adsorption and photocatalysis for antibiotics elimination from water, in this study, a graphitized mesoporous carbon (GMC)-TiO2 nanocomposite was successfully synthesized by an extended resorcinol-formaldehyde (R-F) method. In the composite, the lamellar GMC nanosheets possessed large specific surface area and mesoporous structure, and could adsorb and enrich antibiotics effectively. This could not only reduce the antibiotic concentration in water shortly, but also greatly increase the chances for antibiotics to contact with and be degraded by photocatalysts and active species. Interestingly, GMC could also facilitate the transportation of photogenerated electrons to further improve the photocatalytic efficiency of TiO2, and 15 ma ciprofloxacin (CIP) could be totally mineralized in 1.5 h. Meanwhile, the biological inhibition of reaction solution on luminescence bacteria decreased obviously with antibiotics degradation until non-toxicity, reinforcing the thorough elimination of antibiotics. Besides, from the viewpoint of organic chemistry, several plausible CIP degradation pathways were established using HPLC-MS technique, and an interesting intermediate with five-membered ring structure was firstly proposed, which is helpful to deeply understand CIP degradation. Strong synergy between adsorption and photocatalysis, along with quick and efficient antibiotics elimination, double confirm the great potential of GMC-TiO2 nanocomposite for practical antibiotic wastewater purification. (C) 2018 Elsevier Inc. All rights reserved.

Personal information

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Gender:Female

Alma Mater:山东大学

Degree:Doctoral Degree

School/Department:环境学院

Discipline:Environmental Engineering. Environmental Science

Business Address:环境学院 B701室

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version