高原

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:山东大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:环境学院 B701室

电子邮箱:gaoyuan1988@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Facile one-step synthesis of functionalized biochar from sustainable prolifera-green-tide source for enhanced adsorption of copper ions

点击次数:

论文类型:期刊论文

发表时间:2018-11-01

发表刊物:JOURNAL OF ENVIRONMENTAL SCIENCES

收录刊物:PubMed、SCIE、Scopus

卷号:73

页面范围:185-194

ISSN号:1001-0742

关键字:Hydrothermal carbonization; Functionalized biochar; Adsorption; Heavy metal

摘要:The use of biochars formed by hydrothermal carbonization for the treatment of contaminated water has been greatly limited, due to their poorly developed porosity and low content of surface functional groups. Also, the most common modification routes inevitably require post-treatment processes, which are time-consuming and energy-wasting. Hence, the objective of this research was to produce a cost-effective biochar with improved performance for the treatment of heavy metal pollution through a facile one-step hydrothermal carbonization process coupled with ammonium phosphate, thiocarbamide, ammonium chloride or urea, without any posttreatment The effects of various operational parameters, including type of modification reagent, time and temperature of hydrothermal treatment, and ratio of modification reagent to precursor during impregnation, on the copper ion adsorption were examined. The adsorption data fit the Langmuir adsorption isotherm model quite well. The maximum adsorption capacities (mg/g) of the biochars towards copper ions followed the order of 40-8h-1.0-APBC (95.24) > 140-8h-0-BC (12.52) > 140-8h-1.0-TUBC (12.08) > 140-8h-1.0-ACBC (7.440) > 140-8h-1.0-URBC (5.277). The results indicated that biochars modified with ammonium phosphate displayed excellent adsorption performance toward copper ions, which was 7.6-fold higher than that of the pristine biochar. EDX and FT-IR analyses before and after adsorption demonstrated that the main removal mechanism involved complexation between the phosphate groups on the surface of the modified biochars and copper ions. (C) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.