董国海

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 海洋油气工程国际合作联合实验室主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:建设工程学院

电子邮箱:ghdong@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

STRUCTURAL ANALYSIS OF FLOATING PIPES OF THE FISH CAGE IN CURRENTS

点击次数:

论文类型:会议论文

发表时间:2015-06-15

收录刊物:EI、CPCI-S、Scopus

页面范围:353-364

关键字:Structural analysis; floating pipes; finite element method; hydrodynamic model

摘要:A numerical model is developed to investigate the structural performance and stress distribution of floating pipes of fish cage subjected to the flow. The modeling approach is based on the joint use of the finite element method using the shell elements to simulate the floating pipes and the hydrodynamic force model improved from the Morison's equation and lumped-mass method. The hydrodynamic response of the fish cage and forces on the floating pipes can be obtained by the Morison's equation and lumped-mass method. The stress and deformation of the floating pipes can be evaluated using the finite element method. Using an appropriate iterative scheme, the stress distribution and maximum stress of the floating pipes can be obtained using the proposed model. To validate the numerical model, the numerical results were compared with the data obtained from corresponding physical model tests. The comparisons show the numerical results agree well with the experimental data. On that basis, the simulations of floating pipes in currents are performed to investigate the maximum stress and the critical locations. Simulations of the fish cage in different flow velocity are performed. The effect of the velocity on the deformations and stress of the floating pipes is analyzed. The simulations results show that the stress and deformations drastically increases with the increase of flow velocity. Comparing results of floating pipes with different mooring line arrangements indicates that increasing mooring lines can efficiently lower the stress of the floating pipes. The simulation of the SPM cage system with multiple net cages in current is preformed and the results show the middle cage is most dangerous for the tripartite-cage system.