个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:物理学院
学科:等离子体物理
电子邮箱:rhai@dlut.edu.cn
Comparative study on self-absorption of laser-induced tungsten plasma in air and in argon
点击次数:
论文类型:期刊论文
发表时间:2019-02-04
发表刊物:OPTICS EXPRESS
收录刊物:SCIE、Scopus
卷号:27
期号:3
页面范围:2509-2520
ISSN号:1094-4087
关键字:Atomic emission spectroscopy; Copper alloys; Laser produced plasmas; Laser pulses; Tungsten alloys, Analytical performance; Comparative studies; Emission spectrums; Laser induced plasma; Laser-pulse energy; Laserinduced breakdown spectroscopy (LIBS); Plasma formations; Tungsten copper alloys, Argon lasers
摘要:The onset of self-absorption of laser-induced plasma poses a problem for converting emission line intensities to concentrations, which is one of the main bottlenecks in quantitative laser-induced breakdown spectroscopy (LIBS) measurements. In this paper, the effects of atmosphere and laser fluence on self-absorption reduction of the plasma induced on tungsten-copper alloy target were investigated with nanosecond infrared (1064 nm) laser pulse over a range of 2.9 to 18.2 J/cm(2). The time-resolved features of self-absorption, and temperature and electron density of the plasma were characterized in atmospheric air and argon, respectively. The experimental results show the effect of self-absorption can be significantly reduced by increasing the laser pulse energy. The argon atmosphere is more helpful for self-absorption reduction. The time-resolved diagnostics of emission spectra in the early stage of the plasma formation are very effective to prevent self-absorption to improve the LIBS analytical performance. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement