尹洪超

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:热能工程. 化学工程. 运筹学与控制论

办公地点:大连理工大学能源与动力学院712室

联系方式:电话:13940865971 邮箱:hcyin@dlut.edu.cn

电子邮箱:hcyin@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Identification and robustness analysis of nonlinear multi-stage enzyme-catalytic dynamical system in batch culture

点击次数:

论文类型:期刊论文

发表时间:2015-10-01

发表刊物:COMPUTATIONAL & APPLIED MATHEMATICS

收录刊物:SCIE、Scopus

卷号:34

期号:3

页面范围:957-978

ISSN号:0101-8205

关键字:Nonlinear multi-stage system; Robustness analysis; Constraint transcription; Parallel optimization; Microbial batch fermentation

摘要:In this paper, based on biological phenomena of different characters at different stages, we propose a nonlinear multi-stage enzyme-catalytic dynamic system with unknown time and system parameters. Such system starts at different initial conditions for formulating batch culture process of glycerol bio-dissimilation to 1,3-propanediol. Some properties of the nonlinear system are discussed. In view of the difficulty in accurately measuring the concentration of intracellular substances and the absence of equilibrium points for the nonlinear system, we quantitatively define biological robustness for the entire process of batch culture instead of one for the approximately stable state of continuous culture. Taking the biological robustness of the intracellular substances together with the relative error between the experimental data and the computational values of the extracellular substances as the cost function, we formulate an identification problem subject to the nonlinear system, continuous state inequality constraints and parameter constraints. Analytical solution to system is not naturally available, therefore, a huge number of numerical computations of the proposed system and the proposed biological robustness make solving the identification problem by a serial computer a very complicated task. To improve computational efficiency, we develop an effective parallelized optimization algorithm, based on the constraint transcription and smoothing approximation techniques, for seeking the optimal time and system parameters. Compared with previous work, we assert that the optimal time and system parameters together with the corresponding nonlinear multi-stage dynamical system can reasonably describe batch fermentation at different initial conditions.