Associate Professor
Supervisor of Master's Candidates
Title of Paper:A new radial integration polygonal boundary element method for solving heat conduction problems
Hits:
Date of Publication:2018-08-01
Journal:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Included Journals:SCIE、EI
Volume:123
Page Number:251-260
ISSN No.:0017-9310
Key Words:Heat conduction; Boundary element method; Radial integration method (RIM); Radial integration polygonal boundary element method (RIPBEM)
Abstract:A new approach, radial integration polygonal boundary element method (RIPBEM), for solving heat conduction problems is presented in this paper. The proposed RIPBEM is a new concept in boundary element method (BEM), which would be of great flexibility in mesh generation of complex 3D geometries. Due to the characteristic of arbitrary shapes of polygonal elements, conventional shape functions are insufficient. Moreover, the resulted surface boundary integrals cannot be directly evaluated by the standard Gauss quadrature. To solve these problems, general shape functions for polygonal elements with arbitrary number of nodes are given. To generally and numerically calculate the resulted surface integrals, the radial integration method (RIM) is employed to convert the surface boundary integrals into equivalent contour line integrals of the polygonal elements. As for 3D domain integrals, they are transformed to equivalent line integrals using RIM twice. This methodology can explicitly eliminate strong singularities. Several numerical examples are given to show the effectiveness and the accuracy of the proposed polygonal boundary element method for solving heat conduction problems. (C) 2018 Elsevier Ltd. All rights reserved.
Open time:..
The Last Update Time: ..