侯军刚

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:天津大学

学位:博士

所在单位:化工学院

学科:精细化工. 应用化学

办公地点:大连理工大学西部校区精细化工楼

联系方式:jhou@dlut.edu.cn

扫描关注

论文成果

当前位置: 能源催化 >> 科学研究 >> 论文成果

Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core-Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting

点击次数:

论文类型:期刊论文

发表时间:2017-12-13

发表刊物:SMALL

收录刊物:SCIE、EI、PubMed

卷号:13

期号:46

ISSN号:1613-6810

关键字:core-shell architecture; electrocatalysts; fast electron transfer; overall water splitting; ultrathin carbon sheath

摘要:The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm(-2) and a low Tafel slope of 46 mV dec(-1) for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm(-2). More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches approximate to 10 mA cm(-2) at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.