谷俊峰

副研究员

 硕士生导师
学位:博士
性别:男
毕业院校:大连理工大学
所在单位:力学与航空航天学院
Email :

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Multi-Objective Optimizations of Biodegradable Polymer Stent Structure and Stent Microinjection Molding Process

发布时间:2019-03-12 点击次数:

论文类型:期刊论文
发表刊物:POLYMERS
收录刊物:EI、SCIE
卷号:9
期号:1
ISSN号:2073-4360
关键字:biodegradable polymer; stent; expansion performance; injection molding; kriging; multi-objective optimization
摘要:Biodegradable stents made of poly-L-lactic acid ( PLLA) have a promising prospect thanks to high biocompatibility and a favorable biodegradation period. However, due to the low stiffness of PLLA, polymeric stents have a lower radial stiffness and larger foreshortening. Furthermore, a stent is a tiny meshed tube, hence, it is difficult to make a polymeric stent. In the present study, a finite element analysis-based optimization method combined with Kriging surrogate modeling is firstly proposed to optimize the stent structure and stent microinjection molding process, so as to improve the stent mechanical properties and microinjection molding quality, respectively. The Kriging surrogate models are constructed to formulate the approximate mathematical relationships between the design variables and design objectives. Expected improvement is employed to balance local and global search to find the global optimal design. As an example, the polymeric ART18Z stent was investigated. The mechanical properties of stent expansion in a stenotic artery and the molding quality were improved after optimization. Numerical results demonstrate the proposed optimization method can be used for the computationally measurable optimality of stent structure design and stent microinjection molding process.