扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 贾明 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/jiaming/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
  • 主要任职:图书馆馆长
专著 当前位置: 中文主页 >> 科学研究 >> 专著
LARGE EDDY SIMULATION OF FLUID INJECTION UNDER TRANSCRITICAL CONDITIONS: EFFECTS OF PSEUDOBOILING

点击次数:
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:HEAT TRANSFER RESEARCH
收录刊物:SCIE、EI、Scopus
卷号:48
期号:17
页面范围:1545-1565
ISSN号:1064-2285
关键字:large eddy simulation; transcritical and ideal-gas jet; real-fluid effect; pseudoboiling; turbulent mixing
摘要:Cryogenic nitrogen injected into a supercritical environment is numerically studied by large eddy simulation to explore the influence of pseudoboiling on the jet evolution and mixing process. For comparison, the same model is simulated in ideal-gas conditions with the same initial profiles of density and velocity. The results show that the turbulent kinetic energy and vorticity distributions in both cases are nearly the same indicating that the dominant eddies and the production and dissipation of the turbulent kinetic energy are not directly affected by the pseudoboiling phenomenon. Moreover, the axial velocity distributions in the two cases are also similar, revealing that the pseudoboiling has little effect on turbulent transport mechanisms. However, the density distribution is evidently influenced by the pseudoboiling. Because of the existing of pseudoboiling effects, the most thermal energy absorbed from the surroundings is spent to expand the jet volume, rather than to increase its temperature, so the transcritical fluid is entrained deeply along the axial and radial directions. As a result, before the pseudocritical temperature is reached, the mean profiles of axial and radial density distributions change more slowly in comparison with the ideal-gas condition. Consequently, the mass transport mechanism is considered to be influenced by the pseudoboiling under transcritical conditions.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学