扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 贾明 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/jiaming/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
  • 主要任职:图书馆馆长
专著 当前位置: 中文主页 >> 科学研究 >> 专著
Influence of density ratio on the secondary atomization of liquid droplets under highly unstable conditions

点击次数:
论文类型:期刊论文
发表时间:2016-06-15
发表刊物:FUEL
收录刊物:SCIE、EI
卷号:174
页面范围:25-35
ISSN号:0016-2361
关键字:Secondary atomization; Fragmentation; Density ratio; Highly unstable conditions
摘要:In this paper, the influence of density ratio on the atomization of liquid droplets under highly unstable conditions is numerically investigated with a coupled volume-of-fluid and level-set method. By employing the adaptive mesh refinement technique, the computational cost is significantly reduced and good agreements with experimental measurements on both the morphology and trajectory of droplets are obtained. Specifically, at We = 13, the present model correctly predicts bag breakup, which is consistent with earlier studies. Based on the present model, the effects of density ratio on the deformation and fragmentation of liquid droplets are investigated from the aspects of the time-resolved evolutions of gaseous Weber number, drag coefficient, liquid surface structure, as well as the morphology of liquid droplets, with special attention drawn to gain more in-depth insight into the dynamics of fragmentation under the highly unstable conditions (initial gaseous Weber number We(g,i) = 225, initial gaseous Reynolds number Re-g,Re-i = 10062.5). The results indicate that the drag coefficient is determined by the recirculation region and therefore largely affected by the density ratio. A lower density ratio may lead to a higher deformation rate, while a higher density ratio results in more intensive fragmentation. Furthermore, the density ratio has a significant effect on the deformation and fragmentation in the investigated conditions when the density ratio exceeds 32 at a small Ohnesorge number. (c) 2016 Elsevier Ltd. All rights reserved.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学