扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 贾明 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/jiaming/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
  • 主要任职:图书馆馆长
专著 当前位置: 中文主页 >> 科学研究 >> 专著
Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads

点击次数:
论文类型:期刊论文
发表时间:2021-12-15
发表刊物:ENERGY CONVERSION AND MANAGEMENT
卷号:208
ISSN号:0196-8904
关键字:Dual-mode dual-fuel (DMDF); Numerical simulation; Genetic algorithm; EURO VI emission standards; Fuel efficiency
摘要:The diesel/gasoline dual-mode dual-fuel (DMDF) combustion concept was optimized in a compression-ignition engine by combining the computational fluid dynamics (CFD) simulations with the genetic algorithm. Seven operating parameters with remarkable influences on the engine performance were chosen as the variables to be optimized for simultaneously minimizing the fuel efficiency, nitrogen oxides (NOx), and soot emissions. Moreover, the potential of the further improvement of the DMDF combustion concept was discussed, and the rationality of this strategy was demonstrated. The results indicate that, at low load, simultaneous improvement of the fuel economy and emissions can be realized by strengthening the homogeneous combustion. At mid load, the fuel economy can be improved by reducing the heat transfer losses, while the NOx emissions are sacrificed to some extent. At high load, improved fuel economy can be realized by transferring a part of diffusion combustion to premixed reactivity-controlled compression ignition (RCCI) combustion. Concerning the operating parameters, lower intake temperature is beneficial to decrease the transfer losses, and the control of intake temperature is crucial for the stable operation of DMDF combustion under wide load conditions. Overall, gross indicated thermal efficiency above 45% is achieved, and the NOx and soot emission can be maintained under the Euro 6 standard for the test load range.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学