扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 贾明 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/jiaming/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
  • 主要任职:图书馆馆长
专著 当前位置: 中文主页 >> 科学研究 >> 专著
Analysis of In-Cylinder Turbulent Flows in a DISI Gasoline Engine With a Proper Orthogonal Decomposition Quadruple Decomposition

点击次数:
论文类型:期刊论文
发表时间:2014-11-01
发表刊物:JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME
收录刊物:SCIE、EI、Scopus
卷号:136
期号:11
ISSN号:0742-4795
关键字:gasoline engine; POD; large eddy simulation; cycle-to-cycle variations
摘要:The proper orthogonal decomposition (POD) method is applied to analyze the particle image velocimetry (PIV) measurement data and large eddy simulation (LES) result from an in-cylinder turbulence flow field in a four-valve direct injection spark ignition (DISI) engine. The instantaneous flow fields are decomposed into four parts, namely, mean field, coherent field, transition field and turbulent field, respectively, by the POD quadruple decomposition. The filtering method for separating the four flow parts is based on examining the relevance and correlations between different flow fields reconstructed with various POD mode numbers, and the corresponding reconstructed fields have been verified by their statistical properties. Then, the in-cylinder flow evolution and cycle-to-cycle variations (CCV) are studied separately upon the four field parts. Results indicate that each one of the four field parts exhibits its own flow characteristics and has close connection with others. Furthermore, the mean part contains the most kinetic energy of the entire flow field and represents the bulk flow of the original in-cylinder velocity field; the CCV in this part could almost be neglected, while the coherent field part contains larger scale structures and the most fluctuating energy, and possesses the highest CCV level among the four parts.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学