扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 贾明 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/jiaming/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
  • 主要任职:图书馆馆长
专著 当前位置: 中文主页 >> 科学研究 >> 专著
Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation

点击次数:
论文类型:期刊论文
发表时间:2013-08-01
发表刊物:ENERGY & FUELS
收录刊物:SCIE、EI、Scopus
卷号:27
期号:8
页面范围:4899-4909
ISSN号:0887-0624
摘要:On the basis of our recent experience in developing a skeletal chemical kinetic model of primary reference fuel (PRF) with a semi-decoupling methodology, a new general and compact skeletal model of toluene reference fuels (TRF) consisting of 56 species and 168 reactions is presented for the oxidation of gasoline surrogate fuels. The skeletal submodel of toluene is added to the PRF model using reaction paths and sensitivity analysis. An improvement has been made in comparison to the existing skeletal models of TRF on laminar flame speed and important species evolution, while predictions of precise ignition delay are maintained. The skeletal model in this work is validated by comparison to the experimental data in a shock tube, jet-stirred reactor, flow reactor, and premixed laminar flame speed, as well as an internal combustion engine over extensive ranges of equivalence ratio, temperature, and pressure for each single fuel component and their blends. The new skeletal model is also tested using two ternary surrogates with different compositions on shock tube, laminar flame speed, and internal combustion engine. The results indicate that the overall satisfactory agreements between the predictions and experimental data are achieved.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学