![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院副院长
性别:男
毕业院校:中国科技大学
学位:博士
所在单位:软件学院、国际信息与软件学院
联系方式:jianghe@dlut.edu.cn
Towards Training Set Reduction for Bug Triage
点击次数:
论文类型:会议论文
发表时间:2011-07-18
收录刊物:EI、CPCI-S、Scopus
页面范围:576-581
关键字:bug triage; training set reduction; feature selection; instance selection; software quality
摘要:Bug triage is an important step in the process of bug fixing. The goal of bug triage is to assign a new-coming bug to the correct potential developer. The existing bug triage approaches are based on machine learning algorithms, which build classifiers from the training sets of bug reports. In practice, these approaches suffer from the large-scale and low-quality training sets. In this paper, we propose the training set reduction with both feature selection and instance selection techniques for bug triage. We combine feature selection with instance selection to improve the accuracy of bug triage. The feature selection algorithm. chi(2)-test, instance selection algorithm Iterative Case Filter, and their combinations are studied in this paper. We evaluate the training set reduction on the bug data of Eclipse. For the training set, 70% words and 50% bug reports are removed after the training set reduction. The experimental results show that the new and small training sets can provide better accuracy than the original one.