![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院副院长
性别:男
毕业院校:中国科技大学
学位:博士
所在单位:软件学院、国际信息与软件学院
联系方式:jianghe@dlut.edu.cn
An Approximate Muscle Guided Global Optimization Algorithm for the Three-Index Assignment Problem
点击次数:
论文类型:会议论文
发表时间:2008-06-01
收录刊物:EI、CPCI-S、Scopus
页面范围:2404-2410
摘要:The Three-Index Assignment Problem (AP3) is a famous NP-hard problem with wide applications. Since it's intractable, many heuristics have been proposed to obtain near optimal solutions in reasonable time. In this paper, a new meta-heuristic was proposed for solving the AP3. Firstly, we introduced the conception of muscle (the union of optimal solutions) and proved that it is intractable to obtain the muscle under the assumption that P not equal NP. Moreover, we showed that the whole muscle can be approximated by the union of local optimal solutions. Therefore, the Approximate Muscle guided Global Optimization (AMGO) is proposed to solve the AP3. AMGO employs a global optimization strategy to search in a search space reduced by the approximate muscle, which is constructed by a multi-restart scheme. During the global optimization procedure, the running time can be dramatically saved by detecting feasible solutions and extracting poor partial solutions. Extensive experimental results on the standard AP3 benchmark indicated that the new algorithm outperforms the state-of-the-art heuristics in terms of solution quality. Work of this paper not only provides a new meta-heuristic for NP-hard problems, but shows that global optimization can provide promising results in reasonable time, by restricting it to a fairly reduced search space.