![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院副院长
性别:男
毕业院校:中国科技大学
学位:博士
所在单位:软件学院、国际信息与软件学院
联系方式:jianghe@dlut.edu.cn
Approximate backbone based multilevel algorithm for next release problem
点击次数:
论文类型:会议论文
发表时间:2010-07-07
收录刊物:EI、Scopus
页面范围:1333-1340
摘要:The next release problem (NRP) aims to effectively select software requirements in order to acquire maximum customer profits. As an NP-hard problem in software requirement engineering, NRP lacks efficient approximate algorithms for large scale instances. The backbone is a new tool for tackling large scale NP-hard problems in recent years. In this paper, we employ the backbone to design high performance approximate algorithms for large scale NRP instances. Firstly we show that it is NP-hard to obtain the backbone of NRP. Then, we illustrate by fitness landscape analysis that the backbone can be well approximated by the shared common parts of local optimal solutions. Therefore, we propose an approximate backbone based multilevel algorithm (ABMA) to solve large scale NRP instances. This algorithm iteratively explores the search spaces by multilevel reductions and refinements. Experimental results demonstrate that ABMA outperforms existing algorithms on large instances in terms of solution quality and running time. Copyright 2010 ACM.