![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院副院长
性别:男
毕业院校:中国科技大学
学位:博士
所在单位:软件学院、国际信息与软件学院
联系方式:jianghe@dlut.edu.cn
Strict pattern matching under non-overlapping condition
点击次数:
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:SCIENCE CHINA-INFORMATION SCIENCES
收录刊物:SCIE、EI、CSCD、Scopus
卷号:60
期号:1
ISSN号:1674-733X
关键字:pattern matching; sequential pattern mining; gap constraint; flexible wildcard; non-overlapping; occurrence; Nettree
摘要:Pattern matching (or string matching) is an essential task in computer science, especially in sequential pattern mining, since pattern matching methods can be used to calculate the support (or the number of occurrences) of a pattern and then to determine whether the pattern is frequent or not. A state-of-the-art sequential pattern mining with gap constraints (or flexible wildcards) uses the number of non-overlapping occurrences to denote the frequency of a pattern. Non-overlapping means that any two occurrences cannot use the same character of the sequence at the same position of the pattern. In this paper, we investigate strict pattern matching under the non-overlapping condition. We show that the problem is in P at first. Then we propose an algorithm, called NETLAP-Best, which uses Nettree structure. NETLAP-Best transforms the pattern matching problem into a Nettree and iterates to find the rightmost root-leaf path, to prune the useless nodes in the Nettree after removing the rightmost root-leaf path. We show that NETLAP-Best is a complete algorithm and analyse the time and space complexities of the algorithm. Extensive experimental results demonstrate the correctness and efficiency of NETLAP-Best.