![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院副院长
性别:男
毕业院校:中国科技大学
学位:博士
所在单位:软件学院、国际信息与软件学院
联系方式:jianghe@dlut.edu.cn
扫描关注
节点和边都有容量的有向平面网络中的最小截和最大流
点击次数:
论文类型:期刊论文
发表时间:2006-04-30
发表刊物:计算机学报
收录刊物:EI、PKU、ISTIC、CSCD
卷号:29
期号:4
页面范围:544-551
ISSN号:0254-4164
关键字:平面网络;最大流;最小截;P-完全;NC
摘要:在一般网络中,节点和边都有容量的最小截、最大流问题很容易转化为仅边有容量的问题.但传统转化方法用在平面网络中破坏了网络的平面性,使平面网络中节点和边都有容量的问题比仅边有容量的问题难.使用传统转化方法得到的两个问题的算法复杂度均为O(n2logn)(n表示网络中的节点数).对此,作者曾给出了无向平面网络中最小截问题的保持平面性的转化方法.在此基础上,这里进一步讨论有向平面网络中的最小截、最大流问题,给出有向网络中保持平面性的转化方法,并利用此转化得到了复杂度均为O(nlogn)的最小截和最大流算法.从并行计算复杂性角度来看,传统方法转化后的问题是P-完全的.而使用新方法可以得到NC算法,且可以证明节点和边都有容量的有向平面网络中的最小截、最大流问题都是属于NC的.