Doctoral Degree
Dalian University of Technology
Gender:Female
Business Address:Room No.609,School of Energy and Power Engineering
E-Mail:lanlan@dlut.edu.cn
Indexed by:期刊论文
Date of Publication:2018-01-01
Journal:APPLIED SCIENCES-BASEL
Included Journals:SCIE
Volume:8
Issue:1
ISSN No.:2076-3417
Key Words:porous media; CO2 storage; dissolution rate; heterogeneity;
micro-computed tomography
Abstract:The CO2-brine dissolution homogenizes the distribution of residual CO2 and reduces the leakage risk in the saline aquifer. As a key parameter to immobilize the free CO2, the dissolution rate of CO2-brine could be accelerated through mechanisms like diffusion and dispersion, which are affected by the subsurface condition, pore structure, and background hydrological flow. This study contributed the calculated dissolution rates of both gaseous and supercritical CO2 during brine imbibition at a pore-scale. The flow development and distribution in porous media during dynamic dissolution were imaged in two-dimensional visualization using X-ray microtomography. The fingerings branching and expansion resulted in greater dissolution rates of supercritical CO2 with high contact between phases, while the brine bypassed the clusters of gaseous CO2 with a slower dissolution and longer duration due to the isolated bubbles. The dissolution rate of supercritical CO2 was about two or three orders of magnitude greater than that of gaseous CO2, while the value distributions both spanned about four orders of magnitude. The dissolution rates of gaseous CO2 increased with porosity, but the relationship was the opposite for supercritical CO2. CO2 saturation and the Reynolds number were analyzed to characterize the different impacts on gaseous and supercritical CO2 at different dissolution periods.