Doctoral Degree
Dalian University of Technology
Gender:Female
Business Address:Room No.609,School of Energy and Power Engineering
E-Mail:lanlan@dlut.edu.cn
Indexed by:期刊论文
Date of Publication:2011-04-01
Journal:THEORETICAL AND APPLIED FRACTURE MECHANICS
Included Journals:Scopus、SCIE、EI
Volume:55
Issue:2
Page Number:113-117
ISSN No.:0167-8442
Key Words:LS-DYNA; Reflection; Penetration; Ballistic trajectory
Abstract:This paper uses the numerical simulation LS-DYNA, to simulate the process of the projectile with high rotating speed and different penetration angles penetrating into the moving vehicular door. Because of the moving of the vehicular door, the projectile will turn, and the ballistic trajectory will migrate. At the same time, the projectile will deflect from the vehicular door because of the projectile's penetration angles. In the process of the penetration, the projectile's moving speed is 300 m/s; rotating speed is 0 and 6370 r/s. The vehicular door's moving speed is 80 m/s. The penetration angle is 30 degrees, 45 degrees, 60 degrees and 90 degrees. The projectile is the semi-sphere nose projectile whose diameter is 7.62 mm; the vehicular door's thickness is 2 mm. The material model is the JOHN-COOK material model that can characterize strain, strain rate hardening and thermal softening effects. Through comparing with the results by simulation to study the effects of the projectile's final velocity, the angle of rotation, the ballistic trajectory's migration and the projectile's deflection with different projectile's rotating speeds and penetration angles. (C) 2011 Elsevier Ltd. All rights reserved.