• 更多栏目

    蒋兰兰

    • 教授     博士生导师   硕士生导师
    • 主要任职:Professor
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程
    • 办公地点:能源与动力学院908
    • 联系方式:0411-84708617
    • 电子邮箱:lanlan@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Pore-scale displacement mechanisms investigation in CO2-brine-glass beads system

    点击次数:

    论文类型:会议论文

    发表时间:2016-10-08

    收录刊物:EI、CPCI-S

    卷号:105

    页面范围:4122-4127

    关键字:CGS; Pore-scale; mirco-CT; porous media; multiphase flow

    摘要:Continuous increasing of CO2 emission is observed to a main potential reason of global warning, while CO2 geological sequestration (CGS) offers a promising technique to solve this huge environmental challenge that the world has to face today. There are, however, still some unsolved problems in CGS procedure, which is determined by pore-scale displacement mechanisms. In this study, we investigate the drainage and imbibition process of CO2-brine-glass beads system under reservoir conditions. A micro-focused X-ray computed tomography (micro-CT) machine with high resolution was introduced to imaging CO2/brine displacement and analyse the pore-scale mechanisms. The result shows that, CO2 is continuous and brine phase remains in small pores and throats in drainage. The shape of CO2/brine meniscus indicates that glass beads behave intermediate wet. While in imbibition, the effect of pore-scale displacement mechanisms become significant, piston-like front was observed at pore scale, CO2 phase is cracked and forms isolated ganglia by snap off events. (C) 2017 The Authors. Published by Elsevier Ltd.