• 更多栏目

    蒋兰兰

    • 教授     博士生导师   硕士生导师
    • 主要任职:Professor
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程
    • 办公地点:能源与动力学院908
    • 联系方式:0411-84708617
    • 电子邮箱:lanlan@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    An improved differential box-counting method to estimate fractal dimensions of gray-level images

    点击次数:

    论文类型:期刊论文

    发表时间:2014-07-01

    发表刊物:JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

    收录刊物:SCIE、EI

    卷号:25

    期号:5

    页面范围:1102-1111

    ISSN号:1047-3203

    关键字:Differential box-counting method (DBC); Fractal dimension; Gray-level images; Grid box size; Synthetic images; Over-counting; Texture images; Under-counting

    摘要:The differential box-counting (DBC) method is one of the frequently used techniques to estimate the fractal dimension (FD) of a 2D gray-level image. This paper presents an improved DBC method based on the original one for improvement of the accuracy. By adopting the modifying box-counting mechanism, shifting box blocks in (x, y) plane and selecting appropriate grid box sizes, it can solve the two kinds of problems which the DBC has: over-counting boxes along z direction and under-counting boxes just at the border of two neighboring box blocks where there is a sharp gray-level abruption exits. The experiments using two sets of synthetic images and one set of real natural texture images demonstrate that the improved DBC method can solve the two kinds of problems perfectly, simultaneously, and can outperform other DBC methods in the accuracy. (c) 2014 Elsevier Inc. All rights reserved.