![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:化工学院副院长
其他任职:辽宁省石化行业高效节能分离技术工程实验室副主任
性别:男
毕业院校:天津大学
学位:博士
所在单位:化工学院
学科:化学工程. 膜科学与技术. 水科学与技术
办公地点:大连理工大学西部校区化工实验楼D405
联系方式:Tel:0411-84986291
电子邮箱:xbjiang@dlut.edu.cn
Pulverization Control by Confining Fe3O4 Nanoparticles Individually into Macropores of Hollow Carbon Spheres for High-Performance Li-Ion Batteries
点击次数:
论文类型:期刊论文
发表时间:2018-01-24
发表刊物:ACS APPLIED MATERIALS & INTERFACES
收录刊物:SCIE、EI、PubMed
卷号:10
期号:3
页面范围:2581-2590
ISSN号:1944-8244
关键字:Fe3O4; Li-ion battery; macropores; pulverization; carbon
摘要:In this article, double carbon shell hollow spheres which provide macropores (mC) for ultrasmall Fe3O4 nanoparticle (10-20 nm) encapsulation individually were first prepared (Fe3O4@mC). The well-constructed Fe3O4@mC electrode materials offer the feasibility to study the volume change, aggregation, and pulverization process of the active Fe3O4 nanoparticles for Li-ion storage in a confined space. Fe3O4@mC exhibits excellent electrochemical performances and delivers a high capacity of 645 mA h g(-1) at 2 A g(-1) after 1000 cycles. Even at 10 A g(-1) or after 1000 cycles at 2 A g(-1), the porous carbon structure was well maintained and no obvious aggregation and pulverization of the Fe3O4 nanoparticles was observed, although the volume of the active Fe3O4 particles was expanded to 40-60 nm compared to that of the original particles (10-20 nm). This can be due to the in situ embedment of one Fe3O4 nanoparticle into one macropore individually. The uniform dispersion and confinement of the Fe3O4 nanoparticles in the macropores of the carbon shell could effectively accommodate severe volume variations upon cycling and prevent self-aggregation and spreading out from the carbon shell during the expansion process of the nanoscale Fe3O4 particles, leading to improved capacity retention. Our work confirms the effectiveness for pulverization control by confining Fe3O4 nanoparticles individually into macropores to improve its Li-ion storage properties, providing a novel strategy for the design of new-structured anode materials for Li-ion batteries.