姜晓滨

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:化工学院副院长

其他任职:辽宁省石化行业高效节能分离技术工程实验室副主任

性别:男

毕业院校:天津大学

学位:博士

所在单位:化工学院

学科:化学工程. 膜科学与技术. 水科学与技术

办公地点:大连理工大学西部校区化工实验楼D405

联系方式:Tel:0411-84986291

电子邮箱:xbjiang@dlut.edu.cn

扫描关注

论文成果

当前位置: 姜晓滨 >> 科学研究 >> 论文成果

均匀水凝胶片层高效调控一水合尿酸钠晶习

点击次数:

发表时间:2022-10-10

发表刊物:Huagong Jinzhan/Chemical Industry and Engineering Progress

卷号:40

期号:2

页面范围:977-989

ISSN号:1000-6613

摘要:Crystallization mechanism and morphology control is a critical concern for the crystal engineering study and relevant application. For example, urate crystallization is important for the study of gout induced by hyperuricemia. Herein, using PP membrane as a base membrane, 8 kinds of hydrogel composite membranes (HCMs) with different polymer composition were prepared by ultraviolet cross-linking method, and PEGDA-NIPAM hydrogel materials with excellent interface induced crystallization performance were selected for continuous optimization. Based on the comprehensive analysis of the reproducibility of the hydrogel preparation process and the results of NaCl droplet evaporation experiments, PEGDA-NIPAM (molar ratio is 2:1) material was used to prepare hydrogel slices (HGS). This type of HGS had a uniform surface, vertical structure and thickness, and the slice quality can be quantified by the surface area. Studies on the NaCl salt dissolution adsorption-crystallization experiment illustrated that the prepared HGS possesses hybrid pH-temperature responsibility for high-efficiency interfacial nucleation and concentration regulation functions, which can be used as a functional micro-platform to control solution crystallization. HGS was introduced into the mixed crystal slurry of uric acid dihydrate crystals (UAD) and simulated body fluids (SBF) to adjust the crystallization process and crystal morphology of sodium urate monohydrate crystals (MSUM). Studies showed that the addition of HGS can strengthen the crystal conversion process, and the crystallization duration was shortened from 72h to 20h. At the same time, HGS can also promote crystal growth and crystal agglomeration. Diverse crystal morphologies can be obtained in an efficient manner, which entirely distinguished from the one prepared via no-HGS. This work explored a new path for further revealing and developing crystal morphology control with hydrogel interfacial materials. © 2021, Chemical Industry Press Co., Ltd. All right reserved.

备注:新增回溯数据