• 更多栏目

    姬国钊

    • 副教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:昆士兰大学
    • 学位:博士
    • 所在单位:环境学院
    • 办公地点:西部校区环境学院B713
    • 联系方式:0411-84706206
    • 电子邮箱:guozhaoji@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Engineering Anion Resin based Amorphous Molybdenum Sulphide Composite for Treatment of Authentic Acid Mine Drainage

    点击次数:

    论文类型:期刊论文

    发表时间:2021-01-10

    发表刊物:JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING

    卷号:8

    期号:5

    关键字:Acid Mine Drainage; Amorphous Molybdenum Sulphide; Anion Resin; Adsorption; Batch and Column Tests

    摘要:Acid mine drainage (AMD) is an acidic effluent containing many toxic heavy metal ions (e.g. Cu2+, Cd2+, Hg2+) in mining industry, leading to serious environmental issues such as natural soil and aquatic pollution that threats the whole ecosystem and biosafety. Conventional neutralization and precipitation process cannot effectively remove heavy metal ions due to the risk of secondary contamination. Herein, we report an engineered amorphous molybdenum sulphide composite for selective removal of heavy metal ions from other co-existing ions in AMD solution. This composite was prepared by a facile ion exchange reaction, in which tetrathiomolybdate (MoS42-) anions are firmly bonded to strong anion exchange resins by replacing chloride ions. The obtained composite was used to remove heavy metal ions from both synthetic and authentic AMD solution. The results of batch and fixed-bed column tests suggest high selectivity towards heavy metals, fast adsorption kinetics, good reusability and excellent adsorption capacities in the order of Hg(II) > > Pb(II) > Cu(II) > Cd(II). The adsorption data are fitted well by Langmuir model, indicating the single-layer adsorption mechanism. The theoretical adsorption capacities calculated by Langmuir model are 259.0 mg/g for Cu(II), 204.1 mg/g for Cd(II), 495.0 mg/g for Pb(II) and 1538.4 mg/g for Hg(II). The interaction between metal ions (Cu, Cd, Pb, Hg) and MoS42- anions are demonstrated by the formation of Mo-S-metal (Cu, Cd, Pb, Hg) bonding (the red shift of S2p peak in XPS spectra). Our results support the potential practical application of this new material for scavenging heavy metal ions in AMD wastewater.