教授 博士生导师 硕士生导师
性别: 男
毕业院校: 北京航空航天大学
学位: 博士
所在单位: 信息与通信工程学院
学科: 通信与信息系统. 信号与信息处理. 电路与系统
办公地点: 创新园大厦A520
联系方式: Tel: 86-0411-84707719 实验室网址: http://wican.dlut.edu.cn
电子邮箱: mljin@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2013-11-15
发表刊物: Journal of Computational Information Systems
收录刊物: EI、Scopus
卷号: 9
期号: 22
页面范围: 9003-9011
ISSN号: 15539105
摘要: The power of high performance computing (HPC) heavily depends on the ability to efficiently enhancing huge amounts of parallelism. Random numbers or pseudo random numbers are very important for the efficient implementation for stochastic algorithms. Multi-core CPU and many-core Graphic Processing Units (GPUs) are conductive accelerator to produce the countless random numbers. Nevertheless, GPU does not support to directly call the library offered by CPU. In this paper, we present a novel but simple algorithm for high performance random number generation (called CUDA-RNG). Our experimental results show that this novel generator of RGN can achieve up to 189.32 speedup over the sequential implementation with a small memory load overhead when using 256 threads per block. ? 2013 Binary Information Press.