教授 博士生导师 硕士生导师
性别: 男
毕业院校: 北京航空航天大学
学位: 博士
所在单位: 信息与通信工程学院
学科: 通信与信息系统. 信号与信息处理. 电路与系统
办公地点: 创新园大厦A520
联系方式: Tel: 86-0411-84707719 实验室网址: http://wican.dlut.edu.cn
电子邮箱: mljin@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2014-04-10
发表刊物: Journal of Information and Computational Science
收录刊物: EI、Scopus
卷号: 11
期号: 6
页面范围: 1775-1784
ISSN号: 15487741
摘要: As a population-based algorithm, Ant Colony Optimization (ACO) is intrinsically massively parallel, and therefore it is expected to be well-suited for implementation on GPUs (Graphics Processing Units). In this paper, we present a novel ant colony optimization algorithm (called GACO), which based on Compute Unified Device Architecture (CUDA) enabled GPU. In GACO algorithm, we utilize some novel optimizations, such as hybrid pheromone matrix update, dynamic nearest neighbor path construction, and multiple ant colony distribution, which result in a higher speedup and a better quality solutions compared to other peer of algorithms. GACO is tested by the Traveling Salesman Problem (TSP) benchmark, and the experimental results show a total speedup up to 40:1 and 35:7 over implementation of Ant Colony System (ACS) and Max-min Ant System (MMAS), respectively. ? 2014 Binary Information Press.