教授 博士生导师 硕士生导师
性别: 男
毕业院校: 北京航空航天大学
学位: 博士
所在单位: 信息与通信工程学院
学科: 通信与信息系统. 信号与信息处理. 电路与系统
办公地点: 创新园大厦A520
联系方式: Tel: 86-0411-84707719 实验室网址: http://wican.dlut.edu.cn
电子邮箱: mljin@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2019-07-01
发表刊物: IEEE Transactions on Wireless Communications
收录刊物: SCIE、EI、CPCI-S
卷号: 18
期号: 7
页面范围: 3599-3612
ISSN号: 15361276
关键字: Non-orthogonal multiple access; physical layer security; beamforming optimization; privacy protection; non-convex programming; zero-forcing
摘要: Non-orthogonal multiple access (NOMA) has been proposed as a promising multiple access approach for 5G mobile systems because of its superior spectrum efficiency. However, the privacy between the NOMA users may be compromised due to the transmission of a superposition of all users' signals to successive interference cancellation (SIC) receivers. In this paper, we propose two schemes based on beamforming optimization for NOMA that can enhance the security of a specific private user while guaranteeing the other users' quality of service (QoS). Specifically, in the first scheme, when the transmit antennas are inadequate, we intend to maximize the secrecy rate of the private user, under the constraint that the other users' QoS is satisfied. In the second scheme, the private user's signal is zero-forced at the other users when redundant antennas are available. In this case, the transmission rate of the private user is also maximized while satisfying the QoS of the other users. Due to the non-convexity of optimization in these two schemes, we first convert them into convex forms, and then, an iterative algorithm based on the Concave-Convex Procedure is proposed to obtain their solutions. The extensive simulation results are presented to evaluate the effectiveness of the proposed schemes. ? 2019 IEEE.