大连理工大学  登录  English 
金明录
点赞:

教授   博士生导师   硕士生导师

性别:男

毕业院校:北京航空航天大学

学位:博士

所在单位:信息与通信工程学院

学科:通信与信息系统
信号与信息处理
电路与系统

办公地点:创新园大厦A520

联系方式:

电子邮箱:

手机版

访问量:

开通时间: ..

最后更新时间:..

当前位置 : 中文主页 >> 科学研究 >> 论文成果
A Novel Tone Reservation Scheme Based on Deep Learning for PAPR Reduction in OFDM Systems

点击次数:

发布时间:2020-07-11

论文类型:期刊论文

发表时间:2020-06-01

发表刊物:IEEE COMMUNICATIONS LETTERS

收录刊物:SCIE

卷号:24

期号:6

页面范围:1271-1274

ISSN号:1089-7798

关键字:Peak to average power ratio; Training; Biological neural networks; Neurons; Bandwidth; Feedforward neural network; orthogonal frequency division multiplexing; peak-to-average power ratio; tone reservation

摘要:A major defect of orthogonal frequency division multiplexing (OFDM) systems is the high peak-to-average power ratio (PAPR). In this letter, a novel scheme based on deep leaning, called tone reservation network (TRNet), is proposed for OFDM systems to improve the performance of the tone reservation (TR) technique. More specifically, TRNet reserves a part of tones to generate a peak-canceling signal. The feedforward neural network is used to adaptively generate a peak-canceling signal according to the characteristics of the input signal. Computer simulation results show that the proposed scheme provides a better PAPR reduction performance with fewer reserved tones, which is also beneficial to improve the bandwidth efficiency.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学