
教授 博士生导师 硕士生导师
性别:男
毕业院校:北京航空航天大学
学位:博士
所在单位:信息与通信工程学院
学科:通信与信息系统
信号与信息处理
电路与系统
办公地点:创新园大厦A520
联系方式:
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2020-07-11
论文类型:期刊论文
发表时间:2020-06-01
发表刊物:IEEE COMMUNICATIONS LETTERS
收录刊物:SCIE
卷号:24
期号:6
页面范围:1271-1274
ISSN号:1089-7798
关键字:Peak to average power ratio; Training; Biological neural networks; Neurons; Bandwidth; Feedforward neural network; orthogonal frequency division multiplexing; peak-to-average power ratio; tone reservation
摘要:A major defect of orthogonal frequency division multiplexing (OFDM) systems is the high peak-to-average power ratio (PAPR). In this letter, a novel scheme based on deep leaning, called tone reservation network (TRNet), is proposed for OFDM systems to improve the performance of the tone reservation (TR) technique. More specifically, TRNet reserves a part of tones to generate a peak-canceling signal. The feedforward neural network is used to adaptively generate a peak-canceling signal according to the characteristics of the input signal. Computer simulation results show that the proposed scheme provides a better PAPR reduction performance with fewer reserved tones, which is also beneficial to improve the bandwidth efficiency.