大连理工大学  登录  English 
金明录
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 北京航空航天大学

学位: 博士

所在单位: 信息与通信工程学院

学科: 通信与信息系统. 信号与信息处理. 电路与系统

办公地点: 创新园大厦A520

联系方式: Tel: 86-0411-84707719 实验室网址: http://wican.dlut.edu.cn

电子邮箱: mljin@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Particle filter based device free localisation and tracking for large scale wireless sensor networks

点击次数:

论文类型: 期刊论文

发表时间: 2015-01-01

发表刊物: INTERNATIONAL JOURNAL OF SENSOR NETWORKS

收录刊物: SCIE、Scopus

卷号: 19

期号: 3-4,SI

页面范围: 194-203

ISSN号: 1748-1279

关键字: localisation and tracking; device free; PF; particle filter; WSNs; wireless sensor networks; RSS; received signal strength

摘要: This paper presents a particle filter (PF) based approach to realise the target localisation and tracking task for large scale wireless sensor networks (WSNs) without the need of equipping the target with a wireless device. We utilise the variation of the received signal strength (RSS) measurements between the node pairs and present a statistical model for relating the variation of the RSS measurements to the spatial location of the target. And then, we adopt the PF framework to realise the localisation and tracking task, and the statistical model is utilised to build the observation likelihood function. Meanwhile, to make the above strategies applicable for the computational and power resource limited large scale WSNs, we propose a scheme to select a subset of nodes and links to participate in the location estimation. Experimental results demonstrate the effectiveness of our approach.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学