![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:化学工艺. 能源化工
办公地点:化工实验楼C429
联系方式:0411-84986160
电子邮箱:ljin@dlut.edu.cn
Methyl substitution effect in pyrolysis of coal-based model compound isomers
点击次数:
论文类型:期刊论文
发表时间:2021-01-30
发表刊物:FUEL PROCESSING TECHNOLOGY
卷号:178
页面范围:371-378
ISSN号:0378-3820
关键字:Methyl anisole isomers; Pyrolysis; SPI-TOFMS; Theoretical calculation; Isomerization reaction
摘要:The thermal decomposition of three methyl anisole isomers (o-, m-, and p-methyl anisole) were investigated to understand the influences of methyl substitution position on the benzene ring at low pressure (below 15 Pa) within temperature range from 473 to 1473 K. The pyrolytic phenomena were studied by using vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (SPI-TOFMS) to identify the intermediates, radicals and final products, and the relative concentration profiles of the pyrolytic products were evaluated by the semiquantitative analysis method. It was showed that the bond homolysis of PhO-CH3 was the initial reaction for all three methyl substituted anisole, and the produced intermediates and final products show similar among the pyrolysis experiments of three methyl anisole isomers. Moreover, the effects of the different substituted position on the benzene ring of the methyl group presented on the extraordinary differences of the maximum relative concentration of m/z 106 (6-methylen-2, 4-cyclohexadien-1-one or 4-methylene-2, 5-cyclohexadiene-1-one), The theoretical calculations indicate different generating pathways of m/z 106 for the pyrolysis of m-methyl anisole and o-, p-methyl anisole. Noteworthy, the isomerization reaction played a significant role in the pyrolysis of m-methyl anisole.