Hits:
Indexed by:期刊论文
Date of Publication:2019-04-02
Journal:APPLIED SCIENCES-BASEL
Included Journals:SCIE
Volume:9
Issue:8
Key Words:person re-identification; attention mechanism; adversarial network
Abstract:Person re-identification (re-ID) is a fundamental problem in the field of computer vision. The performance of deep learning-based person re-ID models suffers from a lack of training data. In this work, we introduce a novel image-specific data augmentation method on the feature map level to enforce feature diversity in the network. Furthermore, an attention assignment mechanism is proposed to enforce that the person re-ID classifier focuses on nearly all important regions of the input person image. To achieve this, a three-stage framework is proposed. First, a baseline classification network is trained for person re-ID. Second, an attention assignment network is proposed based on the baseline network, in which the attention module learns to suppress the response of the current detected regions and re-assign attentions to other important locations. By this means, multiple important regions for classification are highlighted by the attention map. Finally, the attention map is integrated in the attention-aware adversarial network (AAA-Net), which generates high-performance classification results with an adversarial training strategy. We evaluate the proposed method on two large-scale benchmark datasets, including Market1501 and DukeMTMC-reID. Experimental results show that our algorithm performs favorably against the state-of-the-art methods.