location: Current position: Home >> Scientific Research >> Paper Publications

Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity

Hits:

Indexed by:期刊论文

Date of Publication:2017-05-01

Journal:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Included Journals:SCIE、EI

Volume:108

Page Number:1551-1559

ISSN No.:0017-9310

Key Words:Boundary element method; Nonlinear transient heat conduction; Temperature dependent conductivity; Radial integration method

Abstract:In this paper, a new and simple boundary-domain integral equation is presented for solving transient nonlinear heat conduction problems with temperature-dependent conductivity of materials. The boundary-domain integral equation is formulated for transient nonlinear heat conduction problems by using the fundamental solution for the corresponding steady linear heat conduction problems, which results in the appearance of domain integrals. The arising domain integrals are converted into equivalent boundary integrals using the radial integration method (RIM) by expressing the temperature as a series of radial basis functions. This treatment results in a pure boundary element algorithm and requires no internal cells to evaluate the domain integrals. Based on the finite difference technique, an implicit time marching solution scheme is developed for solving the time-dependent system of equations. To solve the final system of algebraic equations, the Newton-Raphson iterative method is applied. Numerical examples are presented to demonstrate the accuracy and efficiency of the present method. (C) 2017 Elsevier Ltd. All rights reserved.

Pre One:Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity

Next One:Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems