雷逢春

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

电子邮箱:fclei@dlut.edu.cn

扫描关注

论文成果

当前位置: 雷逢春 >> 科学研究 >> 论文成果

A Khovanov Type Link Homology with Geometric Interpretation

点击次数:

论文类型:期刊论文

发表时间:2016-04-01

发表刊物:ACTA MATHEMATICA SINICA-ENGLISH SERIES

收录刊物:SCIE、ISTIC

卷号:32

期号:4

页面范围:393-405

ISSN号:1439-8516

关键字:Frobenius system; TQFT; Khovanov homology

摘要:We study a Khovanov type homology close to the original Khovanov homology theory from Frobenius system. The homology is an invariant for oriented links up to isotopy by applying a tautological functor on the geometric complex. The homology has also geometric descriptions by introducing the genus generating operations. We prove that Jones Polynomial is equal to a suitable Euler characteristic of the homology groups. As an application, we compute the homology groups of (2, k)-torus knots for every k is an element of N.