个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
电子邮箱:fclei@dlut.edu.cn
A Khovanov Type Link Homology with Geometric Interpretation
点击次数:
论文类型:期刊论文
发表时间:2016-04-01
发表刊物:ACTA MATHEMATICA SINICA-ENGLISH SERIES
收录刊物:SCIE、ISTIC
卷号:32
期号:4
页面范围:393-405
ISSN号:1439-8516
关键字:Frobenius system; TQFT; Khovanov homology
摘要:We study a Khovanov type homology close to the original Khovanov homology theory from Frobenius system. The homology is an invariant for oriented links up to isotopy by applying a tautological functor on the geometric complex. The homology has also geometric descriptions by introducing the genus generating operations. We prove that Jones Polynomial is equal to a suitable Euler characteristic of the homology groups. As an application, we compute the homology groups of (2, k)-torus knots for every k is an element of N.