个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:软件学院(大连理工大学-立命馆大学国际信息与软件学院)党委书记
性别:女
毕业院校:吉林大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算数学. 计算机应用技术
办公地点:大连理工大学开发区校区信息楼309室
联系方式:nalei@dlut.edu.cn
电子邮箱:nalei@dlut.edu.cn
Guaranteed quality isotropic surface remeshing based on uniformization
点击次数:
论文类型:会议论文
发表时间:2017-01-01
收录刊物:EI、CPCI-S
卷号:203
页面范围:297-309
关键字:Surface remeshing; Conformal uniformization; Dynamic discrete Yamabe flow; Delaunay refinement
摘要:Surface remeshing plays a significant role in computer graphics and visualization. Numerous surface remeshing methods have been developed to produce high quality meshes. Generally, the mesh quality is improved in terms of vertex sampling, regularity, triangle size and triangle shape. Many of such surface remeshing methods are based on Delaunay refinement. In particular, some surface remeshing methods generate high quality meshes by performing the planar Delaunay refinement on the conformal uniformization domain. However, most of these methods can only handle topological disks. Even though some methods can cope with high-genus surfaces, they require partitioning a high-genus surface into multiple simply connected segments, and remesh each segment in the parameterized domain.
In this work, we propose a novel surface remeshing method based on uniformization theorem using dynamic discrete Yamabe flow and Delaunay refinement, which is capable of handling surfaces with complicated topologies, without the need of partitioning. The proposed method has the following merits: Dimension deduction, it converts all 3D surface remeshing to 2D planar meshing; Theoretic rigor, the existence of the constant curvature measures and the lower bound of the corner angles of the generated meshes can be proven. Experimental results demonstrate the efficiency and efficacy of our proposed method. (C) 2017 The Authors. Published by Elsevier Ltd.