雷娜

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:软件学院(大连理工大学-立命馆大学国际信息与软件学院)党委书记

性别:女

毕业院校:吉林大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算数学. 计算机应用技术

办公地点:大连理工大学开发区校区信息楼309室

联系方式:nalei@dlut.edu.cn

电子邮箱:nalei@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

MetaSelection: Metaheuristic Sub-Structure Selection for Neural Network Pruning Using Evolutionary Algorithm

点击次数:

论文类型:会议论文

发表时间:2021-07-08

卷号:325

页面范围:2808-2815

摘要:Neural network pruning is widely applied to various mobile applications. Previous pruning methods mainly leverage ad-hoc criteria to evaluate channel importance. In this paper, we propose an effective metaheuristic sub-structure selection (MetaSelection) method for neural network pruning. MetaSelection exploits evolutionary algorithm (EA) to search the proper sub-structure satisfying the resource constraints. In comparison with previous AutoML based methods, MetaSelection can automatically achieve the pruning rate and channel selection at the same time instead of hand-crafted criteria in a cascaded way. Regarding the tremendous search space of channel selection as a combinatorial optimization problem, we further utilize a coarse-to-fine strategy and the novel probability distribution crossover (PDC) to speed up the search procedure. Besides, MetaSelection prunes the network globally rather than in a layer-by-layer way. We evaluate MetaSelection on several appealing deep neural networks, achieving superior results with adaptive depth and width. Concretely, on ImageNet, MetaSelection achieves a top-1 accuracy of 71.5% on MobileNetV2 under 70% FLOPs constraint and a FLOPs reduction of 30% with 76.4% top-1 accuracy for ResNet-50.