![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:能源与动力学院
学科:热能工程
办公地点:能动学院826室
电子邮箱:gtliang@dlut.edu.cn
Review of drop impact on heated walls
点击次数:
论文类型:期刊论文
发表时间:2017-03-01
发表刊物:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
收录刊物:SCIE、EI、ESI高被引论文
卷号:106
页面范围:103-126
ISSN号:0017-9310
关键字:Drop impact; Drop evaporation; Drop rebound; Secondary droplets; Leidenfrost point
摘要:This paper provides a comprehensive review of published literatures concerning the fluid mechanics and heat transfer mechanisms of liquid drop impact on a heated wall. The review is divided into four parts, each centered on one of the main heat transfer regimes: film evaporation, nucleate boiling, transition boiling, and film boiling. Each of these regimes is discussed in detail in terms of available depictions of drop deformation and/or breakup, proposed heat transfer mechanisms, predictive correlations and/or models. It is shown that understanding the underlying physics for each heat transfer regime is highly dependent on the experimental methods that investigators have adopted, and broadness of available databases in terms of liquid type, drop size and momentum, impact angle, and wall material and surface roughness. Despite significant advances in experimental, theoretical and computational research in understanding the interfacial behavior of the drop from the moment of impact, there are many inconsistencies concerning some of the most important aspects of the impact process and ensuing heat transfer, especially in regards to critical heat flux, transition boiling, and the Leidenfrost point. This review is concluded with recommendations concerning future work that is needed to address poorly understood and/or contradictory issues. (C) 2016 Published by Elsevier Ltd.