location: Current position: Home >> Scientific Research >> Paper Publications

Short-Term Power Generation Energy Forecasting Model for Small Hydropower Stations Using GA-SVM

Hits:

Indexed by:期刊论文

Date of Publication:2014-01-01

Journal:MATHEMATICAL PROBLEMS IN ENGINEERING

Included Journals:SCIE

ISSN No.:1024-123X

Abstract:Accurate and reliable power generation energy forecasting of small hydropower (SHP) is essential for hydropower management and scheduling. Due to nonperson supervision for a long time, there are not enough historical power generation records, so the forecasting model is difficult to be developed. In this paper, the support vector machine (SVM) is chosen as a method for short-term power generation energy prediction because it shows many unique advantages in solving small sample, nonlinear, and high dimensional pattern recognition. In order to identify appropriate parameters of the SVM prediction model, the genetic algorithm (GA) is performed. The GA-SVM prediction model is tested using the short-term observations of power generation energy in the Yunlong County and Maguan County in Yunnan province. Through the comparison of its performance with those of the ARMA model, it is demonstrated that GA-SVM model is a very potential candidate for the prediction of short-term power generation energy of SHP.

Pre One:A hybrid method of incorporating extended priority list into equal incremental principle for energy-saving generation dispatch of thermal power systems

Next One:大规模小电并网调度管理策略研究与应用实践