李钢

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:工业催化. 能源化工. 物理化学

办公地点:西校区化工实验楼B525

电子邮箱:liganghg@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks

点击次数:

论文类型:期刊论文

发表时间:2013-11-01

发表刊物:JOURNAL OF ENERGY CHEMISTRY

收录刊物:SCIE、EI、Scopus

卷号:22

期号:6

页面范围:869-875

ISSN号:2095-4956

关键字:metal-organic framework; nitrogen-containing compound; adsorptive denitrogenation; denitrogenation kinetics; denitrogenation thermodynamics

摘要:The adsorptive denitrogenation from fuels over three metal-organic frameworks (MIL-96(Al), MIL-53(Al) and MIL-101(Cr)) was studied by batch adsorption experiments. Four nitrogen-containing compounds (NCCs) pyridine, pyrrole, quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism. The physicochemical properties of the adsorbents were characterized by XRD, N-2 physical adsorption, FT-IR spectrum and Hammett indicator method. The metal-organic frameworks (MOFs), especially the MIL-101(Cr) containing Lewis acid sites as well as high specific surface area, can adsorb large quantities of NCCs from fuels. In addition, the adsorptive capacity over MIL-101(Cr) will be different for NCCs with different basicity. The stronger basicity of the NCC is, the more it can be absorbed over MIL-101(Cr). Furthermore, pore size and shape also affect the adsorption capacity for a given adsorbate, which can be proved by the adsorption over MIL-53(Al) and MIL-96(Al). The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process, respectively. Finally, the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.