个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 工业装备结构分析优化与CAE软件全国重点实验室主任、结构优化理论与应用国际联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 结构工程. 车辆工程
办公地点:力学楼302
联系方式:0411-84707267 ligang@dlut.edu.cn
电子邮箱:ligang@dlut.edu.cn
A new directional stability transformation method of chaos control for first order reliability analysis
点击次数:
论文类型:期刊论文
发表时间:2017-02-01
发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
收录刊物:SCIE、EI、ESI高被引论文
卷号:55
期号:2
页面范围:601-612
ISSN号:1615-147X
关键字:Reliability analysis; HL-RF iterative algorithm; Discrete Chaotic dynamic system; Directional stability Transform method; Convergence control
摘要:The HL-RF iterative algorithm of the first order reliability method (FORM) is popularly applied to evaluate reliability index in structural reliability analysis and reliability-based design optimization. However, it sometimes suffers from non-convergence problems, such as bifurcation, periodic oscillation, and chaos for nonlinear limit state functions. This paper derives the formulation of the Lyapunov exponents for the HL-RF iterative algorithm in order to identify these complicated numerical instability phenomena of discrete chaotic dynamic systems. Moreover, the essential cause of low efficiency for the stability transform method (STM) of convergence control of FORM is revealed. Then, a novel method, directional stability transformation method (DSTM), is proposed to reduce the number of function evaluations of original STM as a chaos feedback control approach. The efficiency and convergence of different reliability evaluation methods, including the HL-RF algorithm, STM and DSTM, are analyzed and compared by several numerical examples. It is indicated that the proposed DSTM method is versatile, efficient and robust, and the bifurcation, periodic oscillation, and chaos of FORM is controlled effectively.