个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 工业装备结构分析优化与CAE软件全国重点实验室主任、结构优化理论与应用国际联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 结构工程. 车辆工程
办公地点:力学楼302
联系方式:0411-84707267 ligang@dlut.edu.cn
电子邮箱:ligang@dlut.edu.cn
Modified-modal-pushover-based seismic optimum design for steel structures considering life-cycle cost
点击次数:
论文类型:期刊论文
发表时间:2012-06-01
发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
收录刊物:SCIE、EI、Scopus
卷号:45
期号:6
页面范围:861-874
ISSN号:1615-147X
关键字:Structural optimization; Steel structures; Earthquake; Modified modal pushover analysis; Life-cycle cost; Interstory drift
摘要:A modified-modal-pushover-based optimization technique is presented to design steel moment resisting frame buildings for minimizing the life-cycle cost based on the framework of performance based earthquake engineering. Modified modal pushover analysis (MMPA) procedure capturing the higher mode effect well is utilized to analyze the inelastic seismic demands of the structures subjected to the considered design earthquakes in terms of the Chinese seismic code for buildings, especially for the medium- to high-rise buildings. Furthermore, the life-cycle cost is formulated as the summation of the initial material cost and the future expected damage loss, which can be stated as a function of seismic performance levels and their corresponding failure probability by means of a statistical model. Meanwhile, the damage loss is explicitly and continuously expressed by the defined interstory drift index using the fuzzy-decision theory. Moreover, the powerful adaptive simulated annealing algorithm is applied to solve the discrete optimization problem due to the discreteness of standard steel sections. Finally, a 9-story planar steel frame is provided to illustrate the effectiveness of the proposed optimization design technique, which achieves not only more cost-effective design but greatly improves the robustness of the optimum design as well.