的个人主页 http://faculty.dlut.edu.cn/liguo/zh_CN/index.htm
点击次数:
论文类型:期刊论文
发表时间:2016-01-01
发表刊物:RSC ADVANCES
收录刊物:SCIE、EI
卷号:6
期号:38
页面范围:31968-31975
ISSN号:2046-2069
摘要:Molybdenum-based double perovskites have been extensively studied as electrode materials in solid oxide fuel cells (SOFCs) due to their mixed ionic/electronic conductivity (MIEC) characteristics. Since the ionic conductivity in perovskite crystals arises primarily from oxygen ion diffusion via a vacancy-hopping mechanism, both the formation energy of the oxygen vacancy and the migration energy barrier play an essential role in the MIEC performance. In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method plus Hubbard U for Co and Ni. The electronic ground states of the oxygen-stoichiometric cells exhibited apparent eigenvalue gaps which are consistent with the measured insulating features. The oxygen-deficient structures were studied by removing a neutral oxygen atom according to SOFC working conditions, and the minimum energy path (MEP) of oxygen ion migration was optimized using the nudged elastic band (NEB) method which produced the theoretical migration energy barriers at the DFT+U level. The vacant oxygen sites released electrons to the adjacent cation d states, coupled with the delocalization characteristics of the Mo 4d state, which led eventually to the transition from an insulator to the electronic conductivity of the oxygen-deficient crystals. The electronic structure analysis suggested that the outer shell electrons of Mg, Co and Ni significantly affected the energies of oxygen vacancy formation and migration. Our results elucidate the effect of B-site substitution elements on the electronic properties and MIEC characteristics which provides theoretical support for the enhancement of the MIEC properties for these Mo-based double perovskites.