• 更多栏目

    李俊杰

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:建设工程学院
    • 学科:水工结构工程. 防灾减灾工程及防护工程
    • 电子邮箱:lijunjie@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    基于混沌优化支持向量机的大坝安全监控预测

    点击次数:

    论文类型:期刊论文

    发表时间:2007-02-28

    发表刊物:武汉大学学报(工学版)

    收录刊物:PKU、ISTIC、CSCD

    卷号:40

    期号:1

    页面范围:53-57

    ISSN号:1671-8844

    关键字:支持向量机;混沌优化;大坝;安全监控;预测;统计回归;BP神经网络

    摘要:首先介绍了基于统计学习理论的一种新的机器学习技术--支持向量机(Support Vector Machine, SVM),并针对目前支持向量机参数选择时人为选择的盲目性,将具有良好优化性能的混沌优化(Chaos Optimization)技术应用到支持向量机惩罚函数和核函数参数的优化,提出了混沌优化支持向量机(Chaos Optimization Support Vector Machine, COSVM)方法.根据丰满大坝1997~2004年的实际监测数据,建立了混沌优化支持向量机大坝安全监控预测模型,进行了与统计回归模型和BP神经网络模型的分析比较,结果表明,COSVM模型具有更高的预测精度,同时在较长时段的预测中,COSVM模型也表现出更好的泛化推广性能.