• 更多栏目

    李俊杰

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:建设工程学院
    • 学科:水工结构工程. 防灾减灾工程及防护工程
    • 电子邮箱:lijunjie@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Parameter identification of concrete dams using swarm intelligence algorithm

    点击次数:

    论文类型:期刊论文

    发表时间:2017-01-01

    发表刊物:ENGINEERING COMPUTATIONS

    收录刊物:SCIE、EI

    卷号:34

    期号:7,SI

    页面范围:2358-2378

    ISSN号:0264-4401

    关键字:Particle swarm optimization; Inverse analysis; Parameter identification; Artificial bee colony algorithm; Concrete dam; Fireworks algorithm

    摘要:Purpose - Parameter identification is an important issue in structural health monitoring and damage identification for concrete dams. The purpose of this paper is to introduce a novel adaptive fireworks algorithm (AFWA) into inverse analysis of parameter identification.
       Design/methodology/approach - Swarm intelligence algorithms and finite element analysis are integrated to identify parameters of hydraulic structures. Three swarm intelligence algorithms: AFWA, standard particle swarm optimization (SPSO) and artificial bee colony algorithm (ABC) are adopted to make a comparative study. These algorithms are introduced briefly and then tested by four standard benchmark functions. Inverse analysis methods based on AFWA, SPSO and ABC are adopted to identify Young's modulus of a concrete gravity dam and a concrete arch dam.
       Findings - Numerical results show that swarm intelligence algorithms are powerful tools for parameter identification of concrete structures. The proposed AFWA-based inverse analysis algorithm for concrete dams is promising in terms of accuracy and efficiency.
       Originality/value - Fireworks algorithm is applied for inverse analysis of hydraulic structures for the first time, and the problem of parameter selection in AFWA is studied.